Derivatives of Exponential and Logarithmic Functions

- e^{x} is particularly useful in modeling exponential growth.
-An interesting application as it applies to calculus is

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \quad \text { "Ratio" }
$$

-This creates an interesting relationship between the function e^{x} and its derivative:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x}\right)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h} \quad e^{x} \cdot e^{h}=e^{x+h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} e^{x} \cdot \frac{e^{h}-1}{h} \\
& =e^{x} \cdot 1=e^{x}
\end{aligned}
$$

-So the derivative of e^{x} is the function itself e^{x} !

$$
\frac{d}{d x} e^{x}=e^{x}
$$

-If u is a differentiable function of x

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

Example-How does the Flu spread?

-The spread of the flu is modeled by

$$
P(t)=\frac{100}{1+e^{3-t}}
$$

where P is the total number of students infected t days after the first case was noticed.
a) Estimate the initial number of students infected

$$
P(0)=\frac{100}{1+e^{3-0}}=5(\text { rounded })
$$

b) How fast is the flu spreading after 3 days?

$$
\begin{aligned}
& \frac{d P}{d t}=\left(100\left(1+e^{3-t}\right)^{-1}\right)=-100\left(1+e^{3-t}\right)^{-2} \cdot \frac{d}{d t}\left(1+e^{3-t}\right) \\
& =-100\left(1+e^{3-t}\right)^{-2} \cdot\left(0+e^{3-t} \cdot \frac{d}{d t}(3-t)\right) \\
& =-100\left(1+e^{3-t}\right)^{-2}\left(e^{3-t}(-1)\right) \\
& =\frac{100 e^{3-t}}{\left(1+e^{3-t}\right)^{2}}
\end{aligned}
$$

Derivative of a^{x}

-What about an exponential function with a base other then e ?
-We will assume the base is positive and no zero since $y=1^{x}$ is constant.

So, for $a>0$, and $a \neq 1$

$$
\frac{d}{d x}\left(a^{u}\right)=a^{u} \cdot \ln a\left(\frac{d u}{d x}\right)
$$

Example

-At what point does $y=2^{\dagger}-3$ have a tangent line with slope 21?

$$
\begin{aligned}
& \frac{d}{d t}\left(2^{+}-3\right)=2^{+} \ln (2)-0=2^{+} \ln (2) \\
& 2^{+} \ln (2)=21 \\
& 2^{+}=\frac{21}{\ln (2)} \\
& \ln \left(2^{+}\right)=\ln \left(\frac{21}{\ln (2)}\right) \\
& t-\ln (2)=\ln (21)-\ln (\ln (2)) \\
& t=\frac{\ln (21)-\ln (\ln (2))}{\ln (2)} \approx 4.921 \\
& y=2^{+} \cdot 3=27.297 \\
& (4.9,27.3)
\end{aligned}
$$

Derivative of $\ln (x)$
-Since we know $\frac{d}{d x} e^{x}$ we can find the derivative of it's inverse $\ln (x)$

$$
\begin{aligned}
& y=\ln (x) \\
& e^{y}=x \\
& \frac{d}{d x}\left(e^{y}\right)=\frac{d}{d x}(x) \\
& e^{y} \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x} \\
& \frac{d y}{d x} \ln (u)=\frac{1}{u} \frac{d u}{d x}
\end{aligned}
$$

Example

-A line with slope m passes through the origin and is tangent to the graph of $y=\ln (x)$. What is the value of m ?
-We weren't given a point!!
-We know

$$
\begin{aligned}
& \text {-coordinate is }(a, \ln (a)) \\
& \text {-slope is } m=\frac{1}{a}
\end{aligned}
$$

-Since the tangent passes through the origin

$$
m=\frac{\ln a-0}{a-0}=\frac{\ln (a)}{a}
$$

-Set the two formulas for slope equal to one another

$$
\begin{aligned}
& \frac{\ln (a)}{a}=\frac{1}{a} \\
& \ln (a)=1 \\
& e^{\ln a}=e^{1} \\
& a=e \\
& m=\frac{1}{e}
\end{aligned}
$$

Derivative of $\log _{a} x$

-The derivative of $\log _{a} x$ comes from the change of base formula

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

-For $a>0$ and $a \neq 1$

$$
\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}
$$

Power Rule for Arbitrary Powers

-If u is a positive differentiable function of x and n is any real number, then u^{n} is a differentiable function of x and

$$
\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}
$$

Example

$$
\begin{aligned}
& y=x^{\sqrt{2}} \\
& \frac{d y}{d x}=\sqrt{2} x^{(\sqrt{2}-1)}
\end{aligned}
$$

Example

$$
\begin{aligned}
& y=(2+\sin (3 x))^{\pi} \\
& \frac{d y}{d x}=\pi(2+\sin (3 x))^{\pi-1}(\cos (3 x))(3) \\
& =3 \pi(2+\sin (3 x))^{\pi-1}(\cos (3 x))
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { Find } \frac{d y}{d x} \text { for } y=x^{x} \\
& y=x^{x} \\
& \ln y=\ln x^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \ln y=x \ln x \\
& \frac{d y}{d x}(\ln y)=\frac{d y}{d x}(x \ln x) \\
& \frac{1}{y} \frac{d y}{d x}=1 \cdot \ln (x)+x \cdot \frac{1}{x} \\
& \frac{d y}{d x}=y(\ln x+1) \\
& \frac{d y}{d x}=x^{x}(\ln x+1)
\end{aligned}
$$

